
第 7回 継承とインターフェイス 

- 7.146 - 

z 継承とインターフェイスを利用したプログラムが書ける 

� 継承を使う利点を説明できる 
� Javaで継承を使ったプログラムが書ける 
� ポリモーフィズムを使ったプログラムが書ける 

 
 
 
 

第7回  継承とインターフェイス 
～オブジェクト指向の真髄に挑戦！～ 

 
学習目標 

 
 
 
 
 
 
 
 



第 7回 継承とインターフェイス 

- 7.147 - 

7.1. 継承 

7.1.1. 配列リストと連結リストの性能比較 
 今回は、配列リストと連結リストの追加の性能を比較してみたいと思います。前回まで

に作ったクラス群を利用して書いた性能を比較するプログラムを例題 7-1に示します。 
 

リスト 7-1：配列、連結リストの性能比較(Example7_1.java) 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-1：配列、連結リストの性能比較 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * メインクラス 
7: */ 
8: public class Example7_1 { 
9:  
10:   /** 
11:   * メイン 
12:   * 1 万件の種類をリストに追加して、その時間を計る 
13:   */ 
14:   public static void main(String[] args) { 
15:  
16:     long startTime;//開始時間を保存する 
17:     long endTime;  //終了時間を保存する 
18:  
19:     //-------配列リストの性能を測定する------- 
20:     //商品種類配列リストを生成する 
21:     ItemTypeArrayList itemTypeArrayList = new ItemTypeArrayList(); 
22:  
23:     startTime = System.currentTimeMillis();//開始時間を測定する 
24:  
25:     //商品種類を 1万件登録する 
26:     for(int i=0;i<10000;i++){ 
27:       itemTypeArrayList.add(new ItemType(1001,"コーラ",120)); 
28:     } 
29:  
30:     endTime = System.currentTimeMillis();//終了時間を測定する 
31:  
32:     System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
33:  
34:     //-------連結リストの性能を測定する------- 
35:     //商品種類連結リストを生成する 
36:     ItemTypeLinkedList itemTypeLinkedList = new ItemTypeLinkedList(); 
37:  
38:     startTime = System.currentTimeMillis();//開始時間を測定する 
39:  



第 7回 継承とインターフェイス 

- 7.148 - 

例題 7-1：配列、連結リストの性能比較(ItemTypeArrayList.java) 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-1：配列、連結リストの性能比較 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品種類配列リストクラス 
7: */ 
8: public class ItemTypeArrayList { 
9:  
10:   private int ARRAY_SIZE = 10000; 
11:  
12:   private ItemType[] itemTypeArray = new ItemType[ARRAY_SIZE];  //商品種類を保存す
るための配列 
13:  
14:   /** 
15:   * 商品種類を追加する 
16:   */ 
17:   public void add(ItemType addItemType){ 
18:     //商品種類が入っていない箱を探す 
19:     for(int i=0;i<ARRAY_SIZE;i++){ 
20:       if(itemTypeArray[i] == null){//入っていない 
21:         itemTypeArray[i] = addItemType;//書き込む 
22:         break; 
23:       } 
24:     } 
25:   } 
26:  
27:   /** 
28:   * 商品種類リストを表示する 
29:   */ 
30:   public void display(){ 
31:     for(int i=0;i<ARRAY_SIZE;i++){ 
32:       if(itemTypeArray[i] != null){//商品種類が入っている 
33:         
System.out.println(itemTypeArray[i].getId()+":"+itemTypeArray[i].getName()+":"+itemTypeA
rray[i].getPrice()+"は販売中です"); 
34:       } 
35:     } 
36:   } 

40:     //商品種類を 1万件登録する 
41:     for(int i=0;i<10000;i++){ 
42:       itemTypeLinkedList.add(new ItemType(1001,"コーラ",120)); 
43:     } 
44:  
45:     endTime = System.currentTimeMillis();//終了時間を測定する 
46:  
47:     System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
48:   } 
49: } 

定数は一まとめに



第 7回 継承とインターフェイス 

- 7.149 - 

● プログラム解説 
 System.currentTimeMills();メソッドは、現在の時刻をミリ秒単位で取得できるメソッド
です。返り値は long型で、仕事の前と後に測って引き算をすればかかった時間が得られる
というわけです。詳しくは第 8回を参照のこと。 

①.ほとんど同じコードが 2度かかれている 

 例題 7-1 は、正しく動作するプログラムですが、Example7_1.java のメインプログラム
にほとんど同じコードが 2度かかれているのが気になるところです。下にExample7_1.java
の問題のコードを載せます。 
 

 
 
 

    //-------配列リストの性能を測定する------- 
    //商品種類配列リストを生成する 
    ItemTypeArrayList itemTypeArrayList = new ItemTypeArrayList(); 
 
    startTime = System.currentTimeMillis();//開始時間を測定する 
 
    //商品種類を 1万件登録する 
    for(int i=0;i<10000;i++){ 
      itemTypeArrayList.add(new ItemType(1001,"コーラ",120)); 
    } 
 
    endTime = System.currentTimeMillis();//終了時間を測定する 
 
    System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
 
    //-------連結リストの性能を測定する------- 
    //商品種類連結リストを生成する 
    ItemTypeLinkedList itemTypeLinkedList = new ItemTypeLinkedList(); 
 
    startTime = System.currentTimeMillis();//開始時間を測定する 
 
    //商品種類を 1万件登録する 
    for(int i=0;i<10000;i++){ 
      itemTypeLinkedList.add(new ItemType(1001,"コーラ",120)); 
    } 
 
    endTime = System.currentTimeMillis();//終了時間を測定する 
 
    System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 

A 

B 



第 7回 継承とインターフェイス 

- 7.150 - 

②.どうしたらメソッド化できるか 

 重複コードは、直ちにメソッド化したいものです。しかし、意味が異なる場合は、メソ

ッド化できません。プログラムの意味を考えてみましょう。 
 

＜考えよう！＞A,Bのプログラムの意味を考えてみよう 

 
 

＜考えよう！＞何が異なるためにメソッド化できないのか？ 

 
 

Aの部分のプログラムの意味 Bの部分のプログラムの意味 



第 7回 継承とインターフェイス 

- 7.151 - 

7.1.2. 継承 

①.継承 

 共通の意味を持つクラスを「抽象化」して、共通の意味をもつ新しいクラスを作るのが、

「継承」の考え方です。 
 Javaではそのような場合には「ItemTypeLinkedListクラスと ItemTypeArrayListクラ
スは、ItemTypeListクラスを継承している」と言います。 
 
 
 
 

抽
象
化

抽
象
化

ItemTypeArrayList

+ add()
+ delete()
+ search()
+ display()

ItemTypeLinkedList

+ add()
+ delete()
+ search()
+ display()

ItemTy peList

+ add()
+ delete()
+ search()
+ display()



第 7回 継承とインターフェイス 

- 7.152 - 

②.継承をクラス図で表現する 

クラスの継承関係をクラス図で表現する場合、以下のようになります。 

ItemTypeLinkedList

+ add()
+ delete()
+ search()
+ display()

ItemTypeArrayList

+ add()
+ delete()
+ search()
+ display()

ItemTypeList

+ add( )
+ dele te()
+ sear ch()
+ disp lay()

 
 クラス間に上記のような矢印を書きます。こうすると 

ということをクラス図で表現できます。 
 
 また、継承されたクラスと継承したクラスには、スーパークラスとサブクラスという呼

び名がつきます。上記のクラス図を例にすれば、以下のような関係になります。 

  
 
 

スーパークラス 

サブクラス 

ItemTypeLinkedListクラスは ItemTypeListクラスを継承している。 
ItemTypeArrayListクラスは ItemTypeListクラスを継承している。 

ItemTypeListクラスのサブクラスが ItemTypeArrayListクラスと ItemTypeLinkedListクラス。
ItemTypeArrayListクラスと ItemTypeLinkedListクラスのスーパークラスが ItemTypeListクラ



第 7回 継承とインターフェイス 

- 7.153 - 

7.1.3. Javaで継承を使ったプログラムを書く 

①.スーパークラスの変数への代入 

 これまでは、変数の代入は「同じ型から同じ型への代入」しかできませんでした。例え

ば ItemTypeArrayListクラスの変数には、ItemTypeArrayListのオブジェクトしか入れる
ことができませんでした。 
 ところが、継承関係にあるオブジェクトはこの原則を少し外れます。サブクラスのオブ

ジェクトは、スーパークラスの変数に代入することができるのです。 
 

   

ItemTypeArrayList
オブジェクト

                   

ItemTypeLinkedList
オブジェクト

 
 
 
 
 
 

 

                

ItemTypeArrayList
オブジェクト

    

ItemTypeLinkedList
オブジェクト

 
 

      
 
 
 
 
 
 

基本的に変数には 
型の違うオブジェクトを

入れることはできない。

だが、サブクラスのオブジェクトは 
代入することができる 

itemTypeArrayList itemTypeLinkedList

itemTypeList



第 7回 継承とインターフェイス 

- 7.154 - 

だから以下のプログラムはエラーではありません。 
 
 
 
 
 
 よって、以下のようなプログラムが可能になります。 
 
 
 
 
 
 
 
 
 ５行目と９行目は全く同じコードになっていますが、実際にメソッドが実行されている

対象は変わっています。５行目の時点で itemTypeList に入っているのは
ItemTypeArrayListオブジェクトなので、それに対して addメソッドが呼び出されていま
す。一方９行目では ItemTypeLinkedList オブジェクトが入っているので、それに対して
addメソッドが呼び出されることになるのです。 
 

102番地

コーラ

22(id)

null

ソーダ

23(id)

102番地

コーラ

22(id)

null

ソーダ

23(id)

itemTypeListadd()

ItemTypeLinkedList
オブジェクト

 

    ItemTypeList itemTypeList;//スーパークラスの変数を用意する。 
 
// サブクラスのオブジェクトを、スーパークラスの変数に代入する。 
itemTypeList = new ItemTypeLinkedList(); 
itemTypeList = new ItemTypeArrayList(); 

  
1: ItemTypeList itemTypeList;//スーパークラスの変数を用意する 
2:   
3: //---配列版--- 
4: itemTypeList = new ItemTypeArrayList();//配列版オブジェクトを代入 
5: itemTypeList.add(new ItemType(1001,"コーラ")); //配列版オブジェクトに追加されます 
6:   
7: //---連結リスト版--- 
8: itemTypeList = new ItemTypeLinkedList();//連結リスト版オブジェクトを代入 
9: itemTypeList.add(new ItemType(1001,"コーラ")); //連結リスト版オブジェクトに追加されます

５行目の 
処理 

９行目の 
処理 

itemTypeList

[5][4][3][2][1][0]

add()

ItemTypeArrayList
オブジェクト

itemTypeList

[5][4][3][2][1][0] [5][4][3][2][1][0]

add()

ItemTypeArrayList
オブジェクト



第 7回 継承とインターフェイス 

- 7.155 - 

②.Javaで継承を使ったプログラムを書く 

  

例題 7-2：継承を使う(Example7_2.java) 

 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-2：継承を使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * メインクラス 
7: */ 
8: public class Example7_2 { 
9:  
10:   /** 
11:   * メイン 
12:   * 1 万件の種類をリストに追加して、その時間を計る 
13:   */ 
14:   public static void main(String[] args) { 
15:  
16:     //配列リストの性能を測定する 
17:     performanceTest(new ItemTypeArrayList()); 
18:  
19:     //連結リストの性能を測定する 
20:     performanceTest(new ItemTypeLinkedList()); 
21:  
22:   } 
23:  
24:   /** 
25:   * 商品種類リストの性能を測る 
26:   */ 
27:   private static void performanceTest(ItemTypeList itemTypeList){ 
28:     long startTime;//開始時間を保存する 
29:     long endTime;  //終了時間を保存する 
30:  
31:     startTime = System.currentTimeMillis();//開始時間を測定する 
32:  
33:     //商品種類を 1万件登録する 
34:     for(int i=0;i<10000;i++){ 
35:       itemTypeList.add(new ItemType(1001,"コーラ",120)); 
36:     } 
37:  
38:     endTime = System.currentTimeMillis();//終了時間を測定する 
39:  
40:     System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
41:   } 
42:  
43: } 



第 7回 継承とインターフェイス 

- 7.156 - 

例題 7-2：継承を使う(ItemTypeList.java) 

 

例題 7-2：継承を使う(ItemTypeArrayList.java) 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-2：継承を使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品リストクラス 
7: */ 
8: public class ItemTypeList { 
9:  
10:   /** 
11:   * 商品種類を登録する 
12:   */ 
13:   public void add(ItemType addItemType){ 
14:   } 
15:  
16:   /** 
17:   * 商品種類リストを表示する 
18:   */ 
19:   public void display(){ 
20:   } 
21:  
22: } 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-2：継承を使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品種類配列リストクラス 
7: */ 
8: public class ItemTypeArrayList extends ItemTypeList{ 
9:  
10:   private int ARRAY_SIZE = 10000; 
11:  
12:   private ItemType[] itemTypeArray = new ItemType[ARRAY_SIZE];  //商品種類を保存す
るための配列 
13:  
14:   /** 
15:   * 商品種類を追加する 
16:   */ 
17:   public void add(ItemType addItemType){ 
18:     //商品種類が入っていない箱を探す 
19:     for(int i=0;i<ARRAY_SIZE;i++){ 



第 7回 継承とインターフェイス 

- 7.157 - 

 

例題 7-2：継承を使う(ItemTypeLinkedList.java) 

20:       if(itemTypeArray[i] == null){//入っていない 
21:         itemTypeArray[i] = addItemType;//書き込む 
22:         break; 
23:       } 
24:     } 
25:   } 
26:  
27:   /** 
28:   * 商品種類リストを表示する 
29:   */ 
30:   public void display(){ 
31:     for(int i=0;i<ARRAY_SIZE;i++){ 
32:       if(itemTypeArray[i] != null){//商品種類が入っている 
33:         
System.out.println(itemTypeArray[i].getId()+":"+itemTypeArray[i].getName()+":"+itemTypeA
rray[i].getPrice()+"は販売中です"); 
34:       } 
35:     } 
36:   } 
37:  
38: } 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-2：継承を使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品種類連結リストクラス 
7: */ 
8: public class ItemTypeLinkedList extends ItemTypeList{ 
9:  
10:   private LinkObject first;//始点 
11:   private LinkObject last;//終点 
12:  
13:   /** 
14:   * 商品種類を追加する 
15:   */ 
16:   public void add(ItemType addItemType){ 
17:     //追加する連結オブジェクトを生成する 
18:     LinkObject addLink = new LinkObject(); 
19:     addLink.data = addItemType; 
20:  
21:     if(first == null){//連結リストが空のとき 
22:       first = addLink; 
23:       last = addLink; 
24:     }else{//連結リストが空でないとき 
25:       last.next = addLink; 



第 7回 継承とインターフェイス 

- 7.158 - 

 
 
 
 
 
 
 
 
 

26:       last = addLink; 
27:     } 
28:   } 
29:  
30:   /** 
31:   * 商品種類リストを表示する 
32:   */ 
33:   public void display(){ 
34:     LinkObject current = first;//今たどっている連結オブジェクト 
35:     while(current != null){ 
36:       
System.out.println(current.data.getId()+":"+current.data.getName()+":"+current.data.getP
rice()+"は販売中です"); 
37:       current = current.next; 
38:     } 
39:   } 
40:  
41: } 



第 7回 継承とインターフェイス 

- 7.159 - 

③. 抽象クラスとインターフェイス 

(1)メソッド名を間違えると 

先ほど継承した ItemTypeArrayList.java のコードの中で、もしもメソッドの名前を
disprayと書いてしまったとします。 
 
 
 
 
 
 
 
 

ItemTypeArrayList.java より抜粋 
 

 その場合でもコンパイルはちゃんと通りますが、実行すると ItemTypeArrayListクラス
の disprayメソッドは呼び出されず、その時は何も起きません。なぜなら disprayメソッド
の代りに、ItemTypeListクラスの displayメソッドが呼び出されているからです。 
 
(2)メソッドが呼び出される仕組み 

 
 
 このプログラムのように displayメソッドを呼び出した時、内部的には以下の段階を経て
実際に実行するメソッドを決定しています。 
 
 
 
 
 
 
 
 
 
 
だからサブクラスにおいてメソッド名を間違えて宣言すると、気がつかないうちにスー

パークラスの displayメソッドが呼び出されてしまうのです。 

  /** 
  * 商品種類を表示するメソッド 
  */ 
  public void dispray(){ 
    for(int i=0;i<10;i++){ 
      if(itemTypeArray[i] != null){//商品が入っている 
        System.out.println(itemTypeArray[i].getName()+"は販売中です"); 
      } 
    } 
  } 

displayメソッドと書くつもりが
disprayメソッドとしてしまった

ItemTypeList itemTypeList = new ItemTypeArrayList(); 
itemTypeList.display(); 

itemTypeListに入っているオブジェクトが 
displayメソッドを持っているかどうかをチェックする。 

そのオブジェクトの 
displayメソッドを呼び出す

スーパークラスが持っている 
displayメソッドを呼び出す 

持っていたら 持っていなかったら 



第 7回 継承とインターフェイス 

- 7.160 - 

(3)抽象クラス 

前ページのようなメソッド名の書き間違いは、デバッグが非常に困難です。これを防ぐ

ためには、「スーパークラスのメソッドを、確実にサブクラスに実装してもらう」という仕

組みが必要になります。ItemTypeList クラスの display メソッドを、サブクラスが確実に
実装していれば問題がないわけです。 
その為の仕組みが「抽象クラス」です。以下に抽象クラスとなった ItemTypeListクラス

を示します。 

例題 7-3：抽象クラスを使う(ItemTypeList.java) 

 
クラスとメソッドの宣言に「abstract」と書いてやると、そのクラスは抽象クラスになり
ます。この場合はメソッドの中身を記述しないで、メソッドの宣言だけにします。 
 
 抽象クラスを継承したクラスは、抽象クラスのメソッドを実装しないとコンパイルエラ

ーが起きます。だから先ほどのようにサブクラスで disprayメソッドと書き間違えをすると
コンパイルエラーが発生します。なぜならサブクラスで displayメソッドを実装しなければ
ならないのにそれが見つからないからです。 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-3：抽象クラスを使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品リストクラス 
7: */ 
8: public abstract class ItemTypeList { 
9:  
10:   /** 
11:   * 商品種類を登録する 
12:   */ 
13:   public abstract void add(ItemType addItemType); 
14:  
15:   /** 
16:   * 商品種類リストを表示する 
17:   */ 
18:   public abstract void display(); 
19:  
20: } 



第 7回 継承とインターフェイス 

- 7.161 - 

(4)インターフェイス 

 Javaではメソッドの定義だけする方法として、インターフェイスがあります。インター
フェイスとして定義した ItemTypeList.javaを示します。 

例題 7-4：インターフェイスを使う(ItemTypeList.java) 

 
インターフェイスが持つメソッドは全て定義するだけと決まっているので、抽象クラス

と違って「abstract」と書く必要はありません。 
このインターフェイスを実装した ItemTypeArrayListクラスを以下に示します。 

例題 7-4：インターフェイスを使う(ItemTypeArrayList.java) 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-4：インターフェイスを使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品リストクラス 
7: */ 
8: public interface ItemTypeList { 
9:  
10:   /** 
11:   * 商品種類を登録する 
12:   */ 
13:   public void add(ItemType addItemType); 
14:  
15:   /** 
16:   * 商品種類リストを表示する 
17:   */ 
18:   public void display(); 
19:  
20: } 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-4：インターフェイスを使う 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品種類配列リストクラス 
7: */ 
8: public class ItemTypeArrayList implements ItemTypeList{ 
9:  
10:   private int ARRAY_SIZE = 10000; 
11:  
12:   private ItemType[] itemTypeArray = new ItemType[ARRAY_SIZE];  //商品種類を保存す
るための配列 



第 7回 継承とインターフェイス 

- 7.162 - 

 

④.継承 vs インターフェイス 

 継承とインターフェイスの違いは、以下のようになります。 

  抽象クラス インターフェイス 

変数は持てるか 持てる 持てない 

実装したメソッドを持てるか 持てる 持てない 

多重継承できるか できない できる 

インスタンス化できるか できない できない 

 
 このように多少の違いはありますが、基本的にはどちらでも良いと言えます。違いを意

識した上で状況に応じて使い分けましょう。 

13:  
14:   /** 
15:   * 商品種類を追加する 
16:   */ 
17:   public void add(ItemType addItemType){ 
18:     //商品種類が入っていない箱を探す 
19:     for(int i=0;i<ARRAY_SIZE;i++){ 
20:       if(itemTypeArray[i] == null){//入っていない 
21:         itemTypeArray[i] = addItemType;//書き込む 
22:         break; 
23:       } 
24:     } 
25:   } 
26:  
27:   /** 
28:   * 商品種類リストを表示する 
29:   */ 
30:   public void display(){ 
31:     for(int i=0;i<ARRAY_SIZE;i++){ 
32:       if(itemTypeArray[i] != null){//商品種類が入っている 
33:         
System.out.println(itemTypeArray[i].getId()+":"+itemTypeArray[i].getName()+":"+itemTypeA
rray[i].getPrice()+"は販売中です"); 
34:       } 
35:     } 
36:   } 
37:  
38: } 



第 7回 継承とインターフェイス 

- 7.163 - 

7.2. ｉｆ文 vsポリモーフィズム 

7.2.1. 実装クラスの名前を表示する 
新しい要求として、「itemTypeManageメソッドの始めにおいて、どの実装クラスなのか
を表示するようにして下さい」と求められたとします。どのようにすれば要求を満たすこ

とができるでしょうか。 
 
 
 
 
 
 
 
 
 
 
 
 

  /** 
  * 商品種類を管理するプログラム 
  * コーラ、ソーダ、お茶を追加し、商品種類リストを表示する 
  */ 
  private static void itemTypeManage(ItemTypeList itemTypeList){ 
 
 
 
 
    //商品種類を追加する 
    itemTypeList.add(new ItemType(1001,"コーラ")); 
    itemTypeList.add(new ItemType(1022,"ソーダ")); 
    itemTypeList.add(new ItemType(1033,"お茶")); 
 
    //商品種類リストを表示する 
    itemTypeList.display(); 
  } 

ここで、「実装クラス名」を表示したい！ 



第 7回 継承とインターフェイス 

- 7.164 - 

7.2.2. どのように実装するか 

①. if文で実装する 

この場合は、メソッドの引数として渡された itemTypeListにどのオブジェクトが入って
いるかを調べることができれば良さそうです。それを調べるためには「instanceof演算子」
を使います。instanceof演算子の使い方を示します。 
 
 
これが成立すれば true、不成立ならば falseになります。 

 
 例えば以下のように書いたとします。 
 
 
 
 
 
この場合は if 文の中は true となるのでコンソールには「yes」と出力されるでしょう。
itemTypeListの中には確かに ItemTypeArrayListオブジェクトが入っているからです。 
 
 if文を使って実装したものが、例題 7-5です。 
 

例題 7-5：実装クラス名を表示する(Example7_5.java) 

 

［オブジェクト名（変数名）］instanceof ［クラス名］ 

ItemTypeList itemTypeList = new ItemTypeArrayList(); 
if( itemTypeList instanceof ItemTypeArrayList ){ 
  System.out.println(“yes”); 
}else{ 
  System.out.println(“id”); 
} 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-5：実装クラス名を表示する 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * メインクラス 
7: */ 
8: public class Example7_5 { 
9:  
10:   /** 
11:   * メイン 
12:   * 1 万件の種類をリストに追加して、その時間を計る 
13:   */ 
14:   public static void main(String[] args) { 
15:  



第 7回 継承とインターフェイス 

- 7.165 - 

 
 
 
 
 
 
 
 
 
 
 

16:     //配列リストの性能を測定する 
17:     performanceTest(new ItemTypeArrayList()); 
18:  
19:     //連結リストの性能を測定する 
20:     performanceTest(new ItemTypeLinkedList()); 
21:  
22:   } 
23:  
24:   /** 
25:   * 商品種類リストの性能を測る 
26:   */ 
27:   private static void performanceTest(ItemTypeList itemTypeList){ 
28:  
29:     //実装クラスの名前を表示する 
30:     if(itemTypeList instanceof ItemTypeArrayList){ 
31:       System.out.println("実装クラスの名前：ItemTypeArrayList"); 
32:     }else if(itemTypeList instanceof ItemTypeLinkedList){ 
33:       System.out.println("実装クラスの名前：ItemTypeLinkedList"); 
34:     } 
35:  
36:     long startTime;//開始時間を保存する 
37:     long endTime;  //終了時間を保存する 
38:  
39:     startTime = System.currentTimeMillis();//開始時間を測定する 
40:  
41:     //商品種類を 1万件登録する 
42:     for(int i=0;i<10000;i++){ 
43:       itemTypeList.add(new ItemType(1001,"コーラ",120)); 
44:     } 
45:  
46:     endTime = System.currentTimeMillis();//終了時間を測定する 
47:  
48:     System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
49:   } 
50:  
51: } 



第 7回 継承とインターフェイス 

- 7.166 - 

②.オブジェクトの違いで分岐する 

 スーパークラスに「実装クラス名を得るためのメソッド」を定義して、サブクラスにそ

れを実装してもらうというやり方があります。スーパークラスである ItemTypeListクラス
を以下に示します。 

例題 7-6：ポリモーフィズム(ItemTypeList.java) 

 

 

例題 7-6：ポリモーフィズム(ItemTypeArrayList#getName()メソッドのみ) 

 

 

  /** 
  * このクラスの名前を取得する 
  */ 
  public String getName(){ 
    return "ItemTypeArrayList"; 
  } 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-6：ポリモーフィズム 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * 商品リストクラス 
7: */ 
8: public abstract class ItemTypeList { 
9:  
10:   /** 
11:   * 商品種類を登録する 
12:   */ 
13:   public abstract void add(ItemType addItemType); 
14:  
15:   /** 
16:   * 商品種類を表示する 
17:   */ 
18:   public abstract void display(); 
19:  
20:   /** 
21:   * このクラスの名前を取得する 
22:   */ 
23:   public abstract String getName(); 
24:  
25: } 



第 7回 継承とインターフェイス 

- 7.167 - 

例題 7-6：ポリモーフィズム(ItemTypeLinkedList#getName()メソッドのみ) 

 

例題 7-6：ポリモーフィズム(Example7_6.java) 

  /** 
  * このクラスの名前を取得する 
  */ 
  public String getName(){ 
    return "ItemTypeLinkedList"; 
  } 

  
1: /** 
2: * オブジェクト指向哲学 入門編 
3: * 例題 7-6：ポリモーフィズム 
4: * 配列リストと連結リストの追加性能を比較するプログラム 
5: * 
6: * メインクラス 
7: */ 
8: public class Example7_6 { 
9:  
10:   /** 
11:   * メイン 
12:   * 1 万件の種類をリストに追加して、その時間を計る 
13:   */ 
14:   public static void main(String[] args) { 
15:     //配列リストの性能を測定する 
16:     performanceTest(new ItemTypeArrayList()); 
17:     //連結リストの性能を測定する 
18:     performanceTest(new ItemTypeLinkedList()); 
19:   } 
20:  
21:   /** 
22:   * 商品種類リストの性能を測る 
23:   */ 
24:   private static void performanceTest(ItemTypeList itemTypeList){ 
25:  
26:     //実装クラスの名前を表示する 
27:     System.out.println("実装クラスの名前："+itemTypeList.getName()); 
28:  
29:     long startTime;//開始時間を保存する 
30:     long endTime;  //終了時間を保存する 
31:     startTime = System.currentTimeMillis();//開始時間を測定する 
32:  
33:     //商品種類を 1万件登録する 
34:     for(int i=0;i<10000;i++){ 
35:       itemTypeList.add(new ItemType(1001,"コーラ",120)); 
36:     } 
37:  

入っているオブジェクトによって 
適切なクラスの名前が返ってくる 



第 7回 継承とインターフェイス 

- 7.168 - 

 
 
 
 最後に、このような変更を行った際のクラス図を以下に示します。それぞれのクラスに

getNameメソッドが加わっているのが分かります。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Main

+ main()

ItemTy peList

+ add( )
+ dele te()
+ sear ch()
+ disp lay()
+ getN ame()

1 21 2

ItemTypeLinkedList

+ add()
+ delete()
+ search()
+ display()
+ getName()

ItemTypeArrayList

+ add()
+ delete ()
+ search ()
+ displa y()
+ getNam e()

このようなしくみを 

「ポリモーフィズム」といいます。

38:     endTime = System.currentTimeMillis();//終了時間を測定する 
39:  
40:     System.out.println("かかった時間は"+ (endTime - startTime) + "ミリ秒です"); 
41:   } 
42:  
43: } 



第 7回 継承とインターフェイス 

- 7.169 - 

7.2.3. if文 vs ポリモーフィズム 
 要求を満たすための手法として、2通りのを紹介しました。さて、どちらがよりよい方法
でしょうか。 

＜議論しよう！＞if文とポリモーフィズムの利点･欠点 

 
●if文を用いた場合 
 
 
●ポリモーフィズムを用いた場合 
 
 
 



第 7回 継承とインターフェイス 

- 7.170 - 

練習問題 
＜記述問題＞ 
☆記述問題 7-1 
継承が適用できない場合はどのような時か述べよ。 

 
☆記述問題 7-2 
ポリモーフィズムを適用したらよいと思う場面を考えよ。 
 
＜プログラム問題＞ 
☆プログラム問題 7-1 
プログラム問題 6-1で作ったプログラムのmain()メソッドの重複部分をメソッド化せよ。

その際、ItemTypeArrayList、ItemTypeLinkedListクラスを抽象化した ItemTypeListク
ラスを作れ。ItemTypeListクラスは抽象クラスとして実装せよ。なおプログラム仕様は 6-1
と同様とする。 
クラス図は以下のようになる。 

ItemTypeArrayList ItemTypeLinkedList

Exercise7_1

+ main()

ItemTypeList

+ add()
+ remove()
+ search()
+ display()
21 21

ItemType

+ getId()
+ getName()
+ getPrice()0..n1 0..n1

 


