
第 12 回 汎用的なリストと JavaAPI

 293

z クラスの再利用について議論できる

� 汎用的なクラスとはどういうものか説明できる
� 汎用的なクラスを作るために、効果的に継承を利用することを議論でき
る

� 継承と委譲による設計の違いをクラスの再利用という側面から説明でき
る

z 簡単なコレクション JavaAPI を利用したプログラムが書ける

� クラスのキャストを正しく使ったプログラムが書ける
� Object型の存在を説明できる

第12回 汎用的なリストと JavaAPI
～クラスの再利用について考えよう～

学習目標

 294

12.1. 汎用的なリスト
 リストによる 1対他の関連の実装方法について、「商品種類」と「商品種類リスト」とい
う題材を用いて様々な方法を考えてきました。

商品種類
- 商品番号
- 商品名
- 価格

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

0..n 110..n

 このような 1 対多の関連を実装するケースは良くあるケースなので、これからのプログ
ラミングを楽にするために、今回は汎用的なリストをつくり、再利用することを考えます。

12.1.1. 今回考える題材
 今回考える題材はおなじみの「商品種類」とそのリストの他に、似たようなケースとして

「金種類」を管理しなければならないケースを題材とします。これらはほとんど同じ構造を

しています。

金種類
- 価値

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()
10..n 10..n

商品種類
- 商品番号
- 商品名
- 価格

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()
10..n 10..n

12.1.2. 再利用を考える
次のページに、これらの題材のソースコードを示します。

 よくみると商品種類リストも金種類リストもほとんど同じ重複コードになっています。し

かし、少し工夫しないとこれらの重複コードをなくし、再利用できるリストを作ることはで

きません。問題の分析をしていきましょう。

＜考えよう！＞2 つのプログラムの異なる部分に注目して、何故重複コ

ードになってしまうのか考えよう

第 12 回 汎用的なリストと JavaAPI

 295

例題 12-1：クラスの再利用を考える題材(ItemTypeList.java)

display()メソッドと search()メソッドは削ってある

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 12-1：クラスの再利用を考える題材
4: * 商品種類と金種類をリストに追加するプログラム
5: *
6: * 商品種類リストクラス
7: */
8: public class ItemTypeList {
9:
10: private int ARRAY_SIZE = 20; //配列の大きさ
11: private ItemType[] itemTypeArray; //商品種類を保存する配列
12: private int size = 0; //現在入っている要素数
13:
14: /**
15: * コンストラクタ
16: */
17: public ItemTypeList() {
18: itemTypeArray = new ItemType[ARRAY_SIZE];//配列を初期化する
19: }
20:
21: /**
22: * リストに商品種類を追加する
23: */
24: public void add(ItemType newItemType){
25: itemTypeArray[size] = newItemType;
26: size++;
27: }
28:
29: /**
30: * 指定された商品種類をリストから削除する
31: */
32: public void remove(int deleteID){
33: int i=0;//ループの回数を保存する
34: for(i=0;i<size;i++){
35: if(itemTypeArray[i].getId() == deleteID){//見つかった
36: itemTypeArray[i] = null;//見つかったら、削除する（実は不要）
37: break;
38: }
39: }
40:
41: //残りの要素をシフトする
42: for(;i<size-1;i++){
43: itemTypeArray[i] = itemTypeArray[i+1];
44: }
45:
46: size--;
47: }
48: }

 296

例題 12-1：クラスの再利用を考える題材(MoneyTypeList.java)

display()メソッドと search()メソッドは削ってある

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 12-1：クラスの再利用を考える題材
4: * 商品種類と金種類をリストに追加するプログラム
5: *
6: * 金種類リストクラス
7: */
8: public class MoneyTypeList {
9:
10: private int ARRAY_SIZE = 20; //配列の大きさ
11: private MoneyType[] moneyTypeArray; //金種類を保存する配列
12: private int size = 0; //現在入っている要素数
13:
14: /**
15: * コンストラクタ
16: */
17: public MoneyTypeList() {
18: moneyTypeArray = new MoneyType[ARRAY_SIZE];//配列を初期化する
19: }
20:
21: /**
22: * リストに金種類を追加する
23: */
24: public void add(MoneyType newMoneyType){
25: moneyTypeArray[size] = newMoneyType;
26: size++;
27: }
28:
29: /**
30: * 指定された金種類をリストから削除する
31: */
32: public void remove(int deleteID){
33: int i=0;//ループの回数を保存する
34: for(i=0;i<size;i++){
35: if(moneyTypeArray[i].getId() == deleteID){//見つかった
36: moneyTypeArray[i] = null;//見つかったら、削除する（実は不要）
37: break;
38: }
39: }
40:
41: //残りの要素をシフトする
42: for(;i<size-1;i++){
43: moneyTypeArray[i] = moneyTypeArray[i+1];
44: }
45:
46: size--;
47: }
48: ｝

第 12 回 汎用的なリストと JavaAPI

 297

①.問題の分析

● プログラムが異なる点
¾
¾

②.型を同じにするためには

 型を同じにするために、「継承」の考え方を利用します。
 第 7回で「継承」によって、「プログラムの意味」に注目したクラスを作ることができる
ことを学習してきました。

商品種類配列リスト 商品種類連結リスト

Main

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

 同じように、「商品種類」、「金種類」という二つの型（クラス）をリストの立場になって

考えてみましょう

「プログラムの意味」をリストの立場から考えた時、2 つには、「リストに格納される要

素」という共通の意味があることが分かります。共通の意味があるので、継承を適用するこ

とができます。これで汎用的なリストが作れそうです。

金種類
- 価値

商品種類
- 商品番号
- 商品名
- 価格

リスト要素
汎用リスト

+ 追加()
+ 削除()

 298

12.1.3. 汎用的なリストの実装

①.Object型を利用する

 Javaでは、

 すべてのクラスは自動的に Objectクラスを継承する

 という決まりがあります。

 本来は、extends と書かなければ継承ができないのですが、何も書かなければ Object ク
ラスを継承するという暗黙の約束があります。つまり、すべてのクラスは Objectクラスを
継承しているのです。そのため、今回汎用的なリストを作るに当たって、「リスト要素」を

Objectクラスと考えて実装します。

金種類
- 価値

商品種類
- 商品番号
- 商品名
- 価格

Object
汎用リスト

+ 追加()
+ 削除()

「List 要素」というクラスを作って実装してもかまわないのですが、Object クラスを使
うと、
●すべてのクラスのインスタンスを格納できるリストができる
という利点があるので、こちらを採用することにします。

第 12 回 汎用的なリストと JavaAPI

 299

②.汎用的なリスト

 汎用的なリスト(ObjectListクラス)のソースコードです。

例題 12-2：汎用リストを作る(ObjectList.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 12-2：汎用リストを作る
4: * 商品種類と金種類をリストに追加するプログラム
5: *
6: * 汎用リストクラス
7: */
8: public class ObjectList {
9:
10: private int ARRAY_SIZE = 20; //配列の大きさ
11: private Object[] objectArray; //Object を保存する配列
12: private int size; //要素数
13:
14: /**
15: * コンストラクタ
16: */
17: public ObjectList() {
18: objectArray = new Object[ARRAY_SIZE];//配列を初期化する
19: }
20:
21: /**
22: * リストに Object を追加する
23: */
24: public void add(Object newObject){
25: objectArray[size] = newObject;
26: size++;
27: }
28:
29: /**
30: * 指定された Object をリストから削除する
31: */
32: public void remove(Object object){
33: int i=0;//ループの回数を保存する
34: for(i=0;i<size;i++){
35: if(objectArray[i] == object){//見つかった
36: objectArray[i] = null;//見つかったら、削除する（実は不要）
37: break;
38: }
39: }
40:
41: //残りの要素をシフトする
42: for(;i<size-1;i++){
43: objectArray[i] = objectArray[i+1];
44: }
45:

 300

例題に挙げた「商品種類」、「金種類」クラスがこの汎用的なリストを利用する時の、クラ

ス図を示します。

金種類
- 価値

商品種類
- 商品番号
- 商品名
- 価格

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示() 汎用リスト

+ 追加()
+ 削除()

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

0..n

0..n

110..n

110..n

Objectクラス
を省略

 次に、重複コードが除かれた商品種類リストのソースコードを示します。

46: size--;
47: }
48:
49: /**
50: * リストの要素数を取得する
51: */
52: public int size(){
53: return size;
54: }
55:
56: /**
57: * index 番目の要素を取得する
58: */
59: public Object get(int index){
60: return objectArray[index];
61: }
62:
63: }

第 12 回 汎用的なリストと JavaAPI

 301

例題 12-2：汎用リストを作る(ItemTypeList.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 12-2：汎用リストを作る
4: * 商品種類と金種類をリストに追加するプログラム
5: *
6: * 商品種類リストクラス
7: */
8: public class ItemTypeList {
9:
10: private ObjectList itemTypeList; //商品種類を格納するための汎用リスト
11:
12: /**
13: * コンストラクタ
14: */
15: public ItemTypeList() {
16: itemTypeList = new ObjectList(); //商品種類を格納するリストを初期化する
17: }
18:
19: /**
20: * リストに商品種類を追加する
21: */
22: public void add(ItemType newItemType){
23: itemTypeList.add(newItemType);
24: }
25:
26: /**
27: * 指定された商品種類をリストから削除する
28: */
29: public void remove(int deleteID){
30: ItemType deleteItemType = search(deleteID);
31: itemTypeList.remove(deleteItemType);
32: }
33:
34: /**
35: * 指定された商品番号を持つ商品種類を検索する
36: */
37: public ItemType search(int searchID){
38: int len = itemTypeList.size(); //リストの大きさ
39:
40: for(int i=0;i<len;i++){
41: ItemType itemType = (ItemType)itemTypeList.get(i);//リストから要素を取り出し
て、商品種類にキャスト
42: if(itemType.getId() == searchID){
43: return itemType;//見つかった
44: }
45: }
46:
47: //見つからなかった
48: return null;

 302

49: }
50:
51: /**
52: * 商品種類を表示する
53: */
54: public void display(){
55: int len = itemTypeList.size();//リストの大きさ
56:
57: for(int i=0;i<len;i++){
58: ItemType itemType = (ItemType)itemTypeList.get(i);//リストから要素を取り出し
て、商品種類にキャスト
59:
System.out.println(itemType.getId()+":"+itemType.getName()+":"+itemType.getPrice()+" 円
");//商品種類を表示
60: }
61: }
62: }

第 12 回 汎用的なリストと JavaAPI

 303

12.1.4. キャスト

①.検索に対応する

 商品種類リストや金種類リストでは検索や表示も行われます。しかし、それらのメソッド

を汎用化することはできません。

＜考えよう！＞検索や表示の汎用化ができない理由

●
●
●

商品種類リストや金種類リストでの検索や表示に対応するために、汎用リストでは以下の

メソッドが追加します。

● public int size()
● public Object get(int index)

例題 12-2(ItemTypeList.java)では、商品種類リストや金種類リストの検索や表示メソッ
ドが、これらの汎用リストが提供するメソッドを使って書き直されています。

 304

②.型変換（キャスト）

(1)キャスト

例題 12-2(ItemTypeList.java)検索メソッドの 41行目に注目してください。

ItemType itemType = (ItemType)itemTypeList.get(i);

 このコードは、汎用リストから取得したインスタンスを Object型から ItemType型に変
換しているものです。
 汎用リストの get(index)メソッドは返り値が Object 型です。しかし、欲しい要素は
ItemType型で、そもそも返り値として受け取ったインスタンスは ItemTypeクラスのイン
スタンスです。なぜなら、このクラスの add メソッドでは ItemType クラスのインスタン
スを汎用リストに追加しているからです。

ItemType型として見るItemType型として見るItemType型として見る

Object型として見るObject型として見る

このオブジェクトに
対して

ItemType
- id
- name
- price

Objectコーラ：ItemType

id=1001
name=コーラ
price=120円

コーラ：ItemType

id=1001
name=コーラ
price=120円

 型変換といっても、実際にインスタンスの型が変わってしまうわけではなく、見え方が変

わるだけです。実体は ItemType型ですが、汎用リストでは、すべて Object型として扱わ
なければならないために、汎用リストからの返り値はどうしても Object型になってしまう
のです。

 (クラス名)

のようにクラス名に括弧を付けて代入することにより、型変換（キャスト）が行われます。

 もちろん、ItemType のインスタンスではないのに型変換（例えば Money クラスのイン
スタンスを ItemType型に変換）することはできません。そのため、キャストをするクラス
間が継承関係になっていることが大前提となります。

第 12 回 汎用的なリストと JavaAPI

 305

(2)自動的に行われるキャスト

また、例題 12-2(ItemTypeList.java)追加メソッドの 23行目に注目してください。

itemTypeList.add(newItemType);

汎用リストの追加メソッドは、add(Object object) であり、ItemType型を引数にとるこ
とはできないはずですが、このプログラムは正しく動いています。なぜでしょうか。

 この場合は、ItemTypeクラスは Objectクラスを継承しているので、ItemTypeクラスが
Objectであることは明らかです。そのため自動的にキャストが行われるのです。

 もちろん、以下のように書いても大丈夫です。

itemTypeList.add((Object)newItemType);

(3)自動的キャストと明示的キャスト

 これまでのキャストの仕組みをまとめると、
● サブクラス→スーパークラスの変換は自動的に行われる
● スーパークラス→サブクラスの変換は明示的に行わなければならない
となります。

明示的自動的 ItemType
- id
- name
- price

Object

 306

12.2. 継承 VS委譲

12.2.1. 継承による設計
 ここまでで汎用的なリストを作ることができました。しかし、なぜ金種類リストや商品種

類リストが汎用リストを継承しないのか疑問に思いませんか？

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

汎用リスト

+ 追加()
+ 削除()

12.2.2. 委譲による設計
 例題 12-2で扱った設計は以下のように金種類リストや商品種類リストが汎用リストを利
用して実装されている設計です。
 これらは、追加や削除の仕事を汎用リストに任せているので「委譲」による設計と呼ばれ

ています。

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示() 汎用リスト

+ 追加()
+ 削除()

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

第 12 回 汎用的なリストと JavaAPI

 307

12.2.3. 継承 VS委譲
 どちらの設計も間違いではありません。問題はどちらが優れているかです。

＜議論しよう！＞どちらの設計が優れているか

①.継承の利点が生かされる時

 継承の利点が生かされる時は、「プログラムの意味」に注目したプログラムが書けること

です。

商品種類配列リスト 商品種類連結リスト

Main

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

金種類
- 価値

商品種類
- 商品番号
- 商品名
- 価格

リスト要素
汎用リスト

+ 追加()
+ 削除()

②.継承の利点は生かされるか

 金種類リストか、商品種類リストを意識せず、汎用的な List に対してプログラムを書く
場合が果たしてあるでしょうか？考えてみましょう。

利用するプログラム

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

汎用リスト

+ 追加()
+ 削除()

 308

③.プログラムの意味に注目する

 プログラムの意味に注目してみましょう。

金種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

商品種類リスト

+ 追加()
+ 削除()
+ 検索()
+ 表示()

汎用リスト

+ 追加()
+ 削除()

④.まとめ

 ●
 ●

 委譲か継承かは重要な問題です。
 継承の利点をよく吟味して適用しましょう。その際に、プログラムの意味に着目するのが

非常に重要です。

また、継承の欠点も抑えておきましょう。
¾ 多重継承できない
¾ クラスの継承階層を後から変更することは難しい（何故か考えてみましょう）

第 12 回 汎用的なリストと JavaAPI

 309

12.3. JavaAPIを利用する
 汎用リストのようなクラスはとてもよく使います。プログラムを構成するたびに作るのは

面倒ですし、再利用できる汎用リストを作ることが可能でした。自分だけでなく、みんなで

使いたいものです。
 そのようなことはみんなが考えています。実は Javaでは誰でも使える汎用リストが提供
されています。
 リスト以外にも、ファイル読み込みや、GUI を構成するための再利用可能な汎用的なク
ラスが用意されています。このような、Javaが提供してくれる汎用的なクラス群のことを
Javaクラス･ライブラリといいます。

12.3.1. JavaAPI
 Java クラス･ライブラリは JavaAPI を通して利用します。API とは Application
Programming Interface の略で、クラスライブラリを利用するためのインターフェイスで
す。インターフェイスといってもそんなに難しく考える必要はなく、「クラスの使い方」「メ

ソッドの使い方」と考えればよいでしょう。

ライブラリ
（クラス群）

あなたが作る
アプリケーション･
プログラム

APIを通じて
ライブラリを利用する

12.3.2. リスト周りの API
 今回は、汎用リスト周りの APIを使ったプログラミングをしてみましょう。といっても、
今まで皆さんが作ってきた汎用リストは、JavaAPI そっくりに作ってきたので、使い方は
ほとんど一緒です。

 310

①.Javaで用意されているリスト

　List　

ArrayList LinkedList

● List(インターフェイス)
● ArrayList
¾ 配列で実装されたリスト

● LinkedList
¾ 連結リストで実装されたリスト

②.List API
 List インターフェイスの主なメソッドは次のようなものです。ArrayList も LinkedList
も Listインターフェイスを継承していますから、これらのメソッドが実装されています。
void add(Object object) リストに Objectを追加する
void remove(Object object) リストから Objectを削除する
int size() リストの要素数を得る
Object get(int index) index番目の Objectを得る

今回作った汎用リストとまったく同じメソッドだということが分かるでしょう。

③.LinkedList API
 連結リストクラスにだけ存在する特別なメソッドを紹介します。なぜなら、これらのメソ

ッドを使えば、キューやスタックを容易に作ることができるからです。
void addFirst(Object object) 連結リストの最初に Objectを追加する
void addLast(Object object) 連結リストの最後に Objectを追加する
void removeLast(Object object) 連結リストの最後から Objectを削除する
void removeFirst(Object object) 連結リストの最初から Objectを削除する

第 12 回 汎用的なリストと JavaAPI

 311

12.3.3. JavaAPIを利用したプログラム
 JavaAPIさえ知っていれば、プログラミング自体はそう難しくありません。始めに import
文を書くだけで、それらのクラスが使えるようになります。

JavaAPIを使って書き直した商品種類リストのソースを次に示します。

例題 12-3：JavaAPI を利用する(ItemTypeList.java)

1: import java.util.*;//java.util クラスライブラリの利用を宣言する
2:
3: /**
4: * オブジェクト指向哲学 入門編
5: * 例題 12-3：JavaAPI を利用する
6: * 商品種類と金種類をリストに追加するプログラム
7: *
8: * 商品種類リストクラス
9: */
10: public class ItemTypeList {
11:
12: private ArrayList itemTypeList; //商品種類を格納するための汎用リスト
13:
14: /**
15: * コンストラクタ
16: */
17: public ItemTypeList() {
18: itemTypeList = new ArrayList(); //商品種類を格納するリストを初期化する
19: }
20:
21: /**
22: * リストに商品種類を追加する
23: */
24: public void add(ItemType newItemType){
25: itemTypeList.add(newItemType);
26: }
27:
28: /**
29: * 指定された商品種類をリストから削除する
30: */
31: public void remove(int deleteID){
32: ItemType deleteItemType = search(deleteID);
33: itemTypeList.remove(deleteItemType);
34: }
35:
36: /**
37: * 指定された商品番号を持つ商品種類を検索する
38: */
39: public ItemType search(int searchID){
40: int len = itemTypeList.size(); //リストの大きさ

 312

12.3.4. JavaAPI ドキュメント
 JavaAPIを調べるためのドキュメントが
http://java.sun.com/j2se/1.3/ja/docs/ja/api/index.html にあります。忘れてしまったメソッ
ドや、未知のクラスを使いたい時は、調べて見ましょう。

41:
42: for(int i=0;i<len;i++){
43: ItemType itemType = (ItemType)itemTypeList.get(i);//リストから要素を取り出し
て、商品種類にキャスト
44: if(itemType.getId() == searchID){
45: return itemType;//見つかった
46: }
47: }
48:
49: //見つからなかった
50: return null;
51: }
52:
53: /**
54: * 商品種類を表示する
55: */
56: public void display(){
57: int len = itemTypeList.size();//リストの大きさ
58:
59: for(int i=0;i<len;i++){
60: ItemType itemType = (ItemType)itemTypeList.get(i);//リストから要素を取り出し
て、商品種類にキャスト
61:
System.out.println(itemType.getId()+":"+itemType.getName()+":"+itemType.getPrice()+" 円
");//商品種類を表示
62: }
63: }
64: }

第 12 回 汎用的なリストと JavaAPI

 313

練習問題
＜記述問題＞
☆記述問題 12-1
継承と委譲について、それぞれの利点と欠点を自分の言葉で説明せよ。

＜プログラム問題＞
☆プログラム問題 12-1
 プログラム問題 11-1 で完成した CUI アプリケーションを、JavaAPI を利用して書き直
せ。

