
第 2回 配列を使ったプログラム

 41

z 配列を使ったプログラムが書ける

� 配列を使う利点を説明できる
� Javaでの配列の使い方を説明できる
� 配列と繰り返し文を使ったプログラムが書ける

z 情報を管理する簡単なアルゴリズムを考え、実装できる

� 情報の追加アルゴリズムを考え、実装できる
� 情報の削除アルゴリズムを考え、実装できる
� 情報の検索アルゴリズムを考え、実装できる

第2回 配列を使ったプログラム
～データをまとめて扱う方法～

学習目標

 42

2.1. 配列と for文

2.1.1. コンピュータに得意な仕事をさせる

①.前回のプログラムの問題点

前回のプログラム（例題 1-5）は一番初歩的なプログラムだったため、同じことが何度も
書かれていました。

手作業でなんて、やってられない！

z １００個の商品種類を扱いたいときは、１００個の

変数を宣言しなければならない。
z 初期化や条件分岐も１００個になってしまう

変数を一つ一つ扱うのは大変

でも、コンピュータはこういうのが得意

今回は、配列と繰り返し文(for文)を使って、
その問題を解決します

第 2回 配列を使ったプログラム

 43

Java Tips －for 文－
同じ作業を繰り返したい場合には for 文が非常に便利です｡例えば、１００円のおつりと

して１０円玉を十回出力したい場合（５０円玉、１００円玉がつり銭切れの場合）は、これ

までの方法では以下のように書く必要がありました｡

ところが for文を使うと、同じ「何回くりかえす」という命令を、以下のように書くこと
ができます｡

 for構文は、以下のような仕組みになります｡

 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);
 System.out.println(“１０円が出ました”);

for(int i=0 ; i<10 ; i++){
System.out.println(“１０円が出ました”);

}

仕事

②
no

yes

③

①

① 初期処理

②.継続条件

③.繰り返し処理

for(　①　;　②　;　③　){
仕事;

}

 上の例の場合、int i = 0;
初期値を設定する。適用は最初だけ。
この場合、for 文開始時に iが 0 に設定される。

上の例の場合、i < 10;

この条件を満たす限り、処理を継続する。
この場合、iが１０未満の間は処理が続く。

 上の例の場合、i++;
一回の処理が終わるごとに、この処理を実行。
よく使う++は、「＋１」の意。
すなわち、一回毎に iの値が１づつ増えていく。

 44

2.1.2. 配列を使う

①.for文だけでは問題解決しない

 しかし、問題だった前日のソースコード(例題 1-5)を for 文を使って初期化することはで
きるでしょうか？

 ここに何を書くべきでしょうか？
 itemType0 + i ?

//商品種類を保存するための変数を定義する
 int itemType01;
 int itemType02;
 int itemType03;

 //商品種類を保存するための変数を初期化する
//何も入っていないことを-1 で表す。

 itemType01 = -1;
 itemType02 = -1;
 itemType03 = -1;

//商品種類を保存するための変数を定義する
 int itemType01;
 int itemType02;
 int itemType03;

 //商品種類を保存するための変数を初期化する
//何も入っていないことを-1 で表す。

 for(int i=0 ; i<3 ; i++){
 = -1;
 }

第 2回 配列を使ったプログラム

 45

②.データをまとめて扱う

(1)今までは

今までは、itemType01,itemType02のように「個別の名前」で変数を作っていました。
これだと、01や 02のようにほぼ同じ目的に使用する似た変数まで「全部の変数をいちい
ち宣言しなくてはならない」「その都度、初期化や条件分岐の宣言をしなければならない」

という面倒くささがあります。
特に、データが大量になって、変数がたくさん要るときは大変です。
100個や 200個、さらには何千何万のデータを処理する場合を考えてみてください。

(2)配列を利用すると

配列を使うと、こういう「似た目的に使う変数」を、ほとんど一括して処理できるように

なりとても便利です。
たとえば宣言は int[] itemTypeArray = new int[10] と書くだけで、
１０個の配列が一気に作成できます。
初期化も簡単です。配列は[]内の処理を数字のように扱えるので、

と書くだけで、itemTypeArray[0]~itemTypeArray [9]まで、１０個分の初期化が全て完
了します。これは配列が何百・何千とあっても同様に処理できます。

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

itemTypeArray(配列全体の名前)

for (int i =0; i < 10; i++){
 itemTypeArray [i] = -1;
}

itemType01

itemType02

itemType03

itemType04

-1

- 1

- 1

- 1

 46

③.Javaで配列を使う

具体的に、javaで配列を作る様子を見てみましょう。
同じ配列でも、C言語など他の言語とは形式が多少異なります。

(1)配列の作成

大きさが 10の配列を作る場合、

と書きます。
このように、Javaで配列を作るには

という形式で宣言して作ります。
たとえば、「 double[] account = new double[2000] 」と書けば、account[0]から

account[1999]まで、計２０００個の double型の配列が生成されます。
なお、C言語その他と異なり、JAVAでは変数は作成時点で 0で初期化されています。

(2)配列へのアクセス

配列の各要素には(ブラケット)“[]”でアクセスします。
z 「配列名[数値]」で、それぞれの要素にアクセス（読み書き）できます。

z さらに、数値の存在を利用して、for文を使って一括処理もできます。

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0 0 0 0 0 0 0000 0 0 0 0 0 0 0000103 22 51

配列はこうして[]内部を数字として処理できるため、for文と組み合わせることで繰り返
し処理に強みを発揮します。

int[] itemTypeArray = new int[10];

データ型[] 配列名 = new データ型[個];

なお、C言語その他と異なり、Javaの変数は作成時点で 0で初期化されています。ラッ
キーです。それでもあえて上記プログラム群がさらに「-1」で初期化しているのは、「何
も入っていないときは－1で表現する」と今回は決めているからです。

itemTypeArray[0] = 103;
itemTypeArray[1] = 22;
itemTypeArray[2] = 51;

第 2回 配列を使ったプログラム

 47

④.配列を利用したプログラム

こうして for文と配列を使うと、同じ仕事をするプログラムがちょっと賢くなりました。
コードがだいぶ減りました。これなら要素がいくつ増えてもよさそうですね。

例題 2-1：配列を使う(Example2_1.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 2-1：配列を使う
4: * 商品種類を追加して表示するプログラム
5: *
6: * メインクラス
7: */
8: public class Example2_1 {
9:
10: /**
11: * メイン
12: * 商品種類を追加して表示するプログラム
13: */
14: public static void main(String[] args) {
15:
16: //自動販売機プログラムの開始を知らせる
17: System.out.println("自動販売機が開始しました。");
18:
19: //商品種類を保存するための配列を定義する
20: int[] itemTypeArray = new int[10];
21:
22: //商品種類を保存するための変数を初期化する
23: for(int i=0;i<10;i++){
24: itemTypeArray[i] = -1;//何も入っていないことを-1 として扱う
25: }
26:
27: //商品種類を追加する
28: itemTypeArray[0] = 1001;//コーラ
29: itemTypeArray[1] = 1002;//ソーダ
30: itemTypeArray[2] = 1003;//お茶
31:
32: //保存されている商品種類を表示する
33: for(int i=0;i<10;i++){
34: if(itemTypeArray[i] != -1){//商品種類が入っている
35: System.out.println(itemTypeArray[i]+"は販売中です");
36: }
37: }
38: }
39: }

 48

⑤.配列を使う利点

＜議論しよう！＞配列を使う利点

●同じことを何度も書かないという視点から

●他人に分かりやすいプログラムという視点から

第 2回 配列を使ったプログラム

 49

2.2. 商品種類の管理

2.2.1. 商品種類を管理するとは
今までは商品種類リストといっても表示するだけでしたが、自動販売機には商品種類が変

更されたりすることがありますね。
 配列を応用して「管理」に挑戦してみましょう。

(1)商品種類を管理するとは

z 取り扱う商品種類が増えたら、商品種類リストに商品種類を「追加」する。
z その商品種類を取りあつかっているかチェックするために、商品種類リストから、商品

種類の商品番号を「探す」。
z その商品種類を取り扱うのをやめたら、商品種類リストから、商品種類を「削除」する。

(2)今回プログラムすることー目的の階層構造を考えてみよう！

z

z

z

 50

2.2.2. 商品種類の管理プログラム

①.商品種類の追加

(1)追加の手順を考える

追加するとはプログラムでどういう手順で実現できるでしょう？

(2)まだ商品番号の入っていない箱を探す。(-1が入っている箱を探す。)

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

-1 -1 -1 -1 -1 -1 -1000 -1 -1 -1 -1 -1 -1 -10001001 1022 1033

i

1

addId

1055

(3)見つけたら、そこに商品番号を書き込む。

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

-1 -1 -1 -1 -1 -1 -1000 -1 -1 -1 -1 -1 -1 -10001001 1022 1033

i

3

addId

1055

(4)これで追加が完了。

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

1055 -1 -1 -1 -1 -1 -1000 1055 -1 -1 -1 -1 -1 -10001001 1022 1033

i

3

addId

1055

手順のことを「アルゴリズム」といいます

第 2回 配列を使ったプログラム

 51

(2)追加プログラム

例題 2-2：商品種類を追加する(Example2_2.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 2-2：商品種類を追加する
4: * 商品種類を追加するプログラム
5: *
6: * メインクラス
7: */
8: public class Example2_2 {
9:
10: /**
11: * メイン
12: * 商品種類を追加するプログラム
13: */
14: public static void main(String[] args) {
15:
16: //自動販売機プログラムの開始を知らせる
17: System.out.println("自動販売機が開始しました。");
18:
19: //商品種類を保存するための配列を定義する
20: int[] itemTypeArray = new int[10];
21:
22: //商品種類を保存するための変数を初期化する
23: for(int i=0;i<10;i++){
24: itemTypeArray[i] = -1;//何も入っていないことを-1 として扱う
25: }
26:
27: //商品種類を追加する
28: int addId = 1001;//コーラを追加する
29: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
30: if(itemTypeArray[i] == -1){//入っていない
31: itemTypeArray[i] = addId;//書き込む
32: break;
33: }
34: }
35: }
36: }

 52

②.商品種類の検索

(1)検索のアルゴリズム

＜考えよう！＞検索のアルゴリズムを考えてみよう

 今回の検索は、見つかったときには「見つかりました」と表示し、見つからなかったとき

に「見つかりませんでした」と表示することとします。

 日本語で記述してみよう！

第 2回 配列を使ったプログラム

 53

(2)検索プログラム

例題 2-3：商品種類を検索する(Example2_3.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 2-3：商品種類を検索する
4: * 商品種類を検索するプログラム
5: *
6: * メインクラス
7: */
8: public class Example2_3 {
9:
10: /**
11: * メイン
12: * 商品種類を検索するプログラム
13: */
14: public static void main(String[] args) {
15:
16: //自動販売機プログラムの開始を知らせる
17: System.out.println("自動販売機が開始しました。");
18:
19: //商品種類を保存するための配列を定義する
20: int[] itemTypeArray = new int[10];
21:
22: //商品種類を保存するための変数を初期化する
23: for(int i=0;i<10;i++){
24: itemTypeArray[i] = -1;//何も入っていないことを-1 として扱う
25: }
26:
27: //検索の準備として商品種類を追加する
28: int addId = 1001;//コーラを追加する
29: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
30: if(itemTypeArray[i] == -1){//入っていない
31: itemTypeArray[i] = addId;//書き込む
32: break;
33: }
34: }
35: addId = 1002;//ソーダを追加する
36: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
37: if(itemTypeArray[i] == -1){//入っていない
38: itemTypeArray[i] = addId;//書き込む
39: break;
40: }
41: }
42:
43: //商品種類を検索する
44: int searchId = 1002;//ソーダを検索する
45: int i;//配列を辿った回数を保存する
46: for(i=0;i<10;i++){

 54

(3)別のアルゴリズムでも検索できる

 例題 2-3とは異なるアルゴリズムで書かれた例題 2-4も紹介します。

例題 2-4：異なる方法の検索アルゴリズム(Example2_4.java)

47: if(itemTypeArray[i] == searchId){//見つかった
48: break;
49: }
50: }
51: if(i == 10){//最後まで辿ったが見つからなかった
52: System.out.println("見つかりませんでした");
53: }else{
54: System.out.println("見つかりました");
55: }
56:
57: searchId = 1004;//DD レモンを検索する
58: for(i=0;i<10;i++){
59: if(itemTypeArray[i] == searchId){//見つかった
60: break;
61: }
62: }
63: if(i == 10){//最後まで辿ったが見つからなかった
64: System.out.println("見つかりませんでした");
65: }else{
66: System.out.println("見つかりました");
67: }
68: }
69: }

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 2-4：異なる方法の検索アルゴリズム
4: * 商品種類を検索するプログラム
5: *
6: * メインクラス
7: */
8: public class Example2_4 {
9:
10: /**
11: * メイン
12: * 商品種類を検索するプログラム
13: */
14: public static void main(String[] args) {
15:
16: //自動販売機プログラムの開始を知らせる

第 2回 配列を使ったプログラム

 55

17: System.out.println("自動販売機が開始しました。");
18:
19: //商品種類を保存するための配列を定義する
20: int[] itemTypeArray = new int[10];
21:
22: //商品種類を保存するための変数を初期化する
23: for(int i=0;i<10;i++){
24: itemTypeArray[i] = -1;//何も入っていないことを-1 として扱う
25: }
26:
27: //検索の準備として商品種類を追加する
28: int addId = 1001;//コーラを追加する
29: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
30: if(itemTypeArray[i] == -1){//入っていない
31: itemTypeArray[i] = addId;//書き込む
32: break;
33: }
34: }
35: addId = 1002;//ソーダを追加する
36: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
37: if(itemTypeArray[i] == -1){//入っていない
38: itemTypeArray[i] = addId;//書き込む
39: break;
40: }
41: }
42:
43: //商品種類を検索する
44: int searchId = 1002;//ソーダを検索する
45: for(int i=0;i<10;i++){
46: if(itemTypeArray[i] == searchId){//見つかった
47: System.out.println("見つかりました");
48: break;
49: }
50: if(i == 9){//最後まで辿ったが見つからなかった
51: System.out.println("見つかりませんでした");
52: }
53: }
54:
55: searchId = 1004;//DD レモンを検索する
56: for(int i=0;i<10;i++){
57: if(itemTypeArray[i] == searchId){//見つかった
58: System.out.println("見つかりました");
59: break;
60: }
61: if(i == 9){//最後まで辿ったが見つからなかった
62: System.out.println("見つかりませんでした");
63: }
64: }
65: }
66: }

 56

③.商品種類の削除

(1)削除のアルゴリズム

＜考えよう！＞削除のアルゴリズムを考えてみよう

 日本語で記述してみよう！

(2)削除プログラム

例題 2-5：商品種類を削除する(Example2_5.java)

1: /**
2: * オブジェクト指向哲学 入門編
3: * 例題 2-5：商品種類を削除する
4: * 商品種類を削除するプログラム
5: *
6: * メインクラス
7: */
8: public class Example2_5 {
9:
10: /**
11: * メイン
12: * 商品種類を削除するプログラム
13: */
14: public static void main(String[] args) {
15:
16: //自動販売機プログラムの開始を知らせる
17: System.out.println("自動販売機が開始しました。");
18:
19: //商品種類を保存するための配列を定義する
20: int[] itemTypeArray = new int[10];
21:
22: //商品種類を保存するための変数を初期化する

第 2回 配列を使ったプログラム

 57

23: for(int i=0;i<10;i++){
24: itemTypeArray[i] = -1;//何も入っていないことを-1 として扱う
25: }
26:
27: //削除の準備として商品種類を追加する
28: int addId = 1001;//コーラを追加する
29: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
30: if(itemTypeArray[i] == -1){//入っていない
31: itemTypeArray[i] = addId;//書き込む
32: break;
33: }
34: }
35: addId = 1002;//ソーダを追加する
36: for(int i=0;i<10;i++){//商品種類が入っていない箱を探す
37: if(itemTypeArray[i] == -1){//入っていない
38: itemTypeArray[i] = addId;//書き込む
39: break;
40: }
41: }
42:
43: //商品種類を削除する
44: int deleteId = 1002;//ソーダを削除する
45: int i=0;//ループの回数を保存する
46: for(i=0;i<10;i++){
47: if(itemTypeArray[i] == deleteId){//見つかった
48: itemTypeArray[i] = -1;//見つかったら、削除する（実は不要）
49: break;
50: }
51: }
52: //残りの要素をシフトする
53: for(;i<9;i++){
54: itemTypeArray[i] = itemTypeArray[i+1];
55: }
56: }
57: }

 58

2.2.3. 今回のプログラムの問題点
(1)追加のとき、配列がいっぱいだったらどうするか？

 例示したプログラムでは、配列がいっぱいだったとき、それ以上追加できません。
つまりせっかく追加するつもりだったデータが追加されないままに終わるかもしれませ

ん。また、ユーザーはその事実を知ることができないかもしれません。
 解決方法を考えてみましょう。

(2)削除のとき、みつからなかったらどうするか？

 データを削除するときに、データが配列に見つからなかったとき、今回のプログラムはど

のような動作になりますか？
 解決方法と共に考えてみましょう。

(3)データの重複をどうする？

 挿入した、あるいは挿入しようとするデータが一部同一のもので重複する場合、無駄に配

列のスペースを消費してしまいますし、意図した動作をしない可能性があります。
問題点と解決方法を考えてみましょう。

これらは今回の演習プログラムでは考えていませんが、実際にはきちんと考えなければな

らないことです。

第 2回 配列を使ったプログラム

 59

練習問題
＜記述問題＞
☆記述問題 2-1
配列を使う利点を自分の言葉で説明せよ。また、配列が使えない時はどのような時か考え

よ。

＜プログラム問題＞
☆プログラム問題 2-1
 商品種類を配列で管理するプログラムを書け。ただし、プログラム仕様と出力仕様を次の

ようなものとする

z プログラム仕様（仕事の手順）

1. コーラ、ソーダ、お茶の順番に登録する
2. ソーダを検索する
3. ソーダを削除する
4. ソーダを検索する
5. 商品種類リストを表示する

